SOCIAL NETWORK ANALYSIS: PUBLIC TRUST AND DIGITAL MOVEMENT OF THE COVID-19 ERA IN INDONESIA
Abstract
The partial lockdown in April, 2020 that was implemented by the Indonesian government during the COVID-19 pandemic drew a lot of criticism from the public. Most of the criticism arose from the weak enforcement of the partial lockdown that was implemented. In addition, many people rejected the use of social restrictions, which had serious negative implications for the economy and the poor in Indonesia. This study examines the public’s responses to the benefits and disadvantages of implementing the Community Activity Restrictions (PPKM) policy on Twitter. The results show that there are two clusters in the conversations on Twitter, which are the Pro-opposition cluster and X Cluster. Negative tendencies and opinions tend to dominate the public conversation on Twitter regarding PPKM policies, which has had significant implications for public confidence in the government’s ability to handle the spread of COVID-19 in Indonesia
Downloads
References
Ardiyanti, H. (2020). Komunikasi Media Yang Efektif Pada Pandemi Covid-19. In Komunikasi Media Yang Efektif Pada Pandemi Covid-19 (Vol. 12).
Barisione, M., & Michailidou, A. (2017). Social media and European politics: Rethinking power and legitimacy in the digital era (M. Barisione & A. Michailidou, eds.). https://doi.org/10.1057/978-1-137-59890-5
Barisione, M., Michailidou, A., & Airoldi, M. (2019). Understanding a digital movement of opinion: the case of #RefugeesWelcome. Information Communication and Society, 22(8), 1145–1164. https://doi.org/10.1080/1369118X.2017.1410204
Bin Muhammad Alkatiri, A., Nadiah, Z., & Nasution, A. N. S. (2020). Opini Publik Terhadap Penerapan New Normal Di Media Sosial Twitter. CoverAge: Journal of Strategic Communication, 11(1), 19–26. https://doi.org/10.35814/coverage.v11i1.1728
Chatfield, A. T., & Reddick, C. G. (2018). Customer agility and responsiveness through big data analytics for public value creation: A case study of Houston 311 on-demand services. Government Information Quarterly, 35(2), 336–347. https://doi.org/10.1016/j.giq.2017.11.002
Chatfield, A. T., Scholl, H. J. J., & Brajawidagda, U. (2013). Tsunami early warnings via Twitter in government: Net-savvy citizens’ co-production of time-critical public information services. Government Information Quarterly, 30(4), 377–386. https://doi.org/10.1016/j.giq.2013.05.021
Ediger, D., Jiang, K., Riedy, J., Bader, D. A., Corley, C., Farber, R., & Reynolds, W. N. (2010). Massive social network analysis: Mining twitter for social good. Proceedings of the International Conference on Parallel Processing, 583–593. https://doi.org/10.1109/ICPP.2010.66
Fanani, A. F., Publik, P. A., Iqbal, M. M., Pemerintahan, P. I., Islam, U., Rahmat, R., … Bangsa, D. M. (2020). Kepemimpinan Transformasional Sektor Publik. Journal of Public Sector Innovations, 4(2), 84–90.
Herlina, S. (2015). Strategi Komunikasi Humas Dalam Membentuk Citra Pemerintahan Di Kota Malang. JISIP: Jurnal Ilmu Sosial Dan Ilmu Politik, 4(3), 493–503. https://doi.org/10.35326/medialog.v1i2.271
Himelboim, I., Smith, M. A., Rainie, L., Shneiderman, B., & Espina, C. (2017). Classifying Twitter Topic-Networks Using Social Network Analysis. Social Media and Society, 3(1). https://doi.org/10.1177/2056305117691545
https://threadreaderapp.com/thread/1418824841193418752.html
Mawardi, I., "Ini Daftar37 Pernyataan Blunder Pemerintah Soal Corona Versi LP3ES?", https://news.detik.com/berita/d-4967416/ini-daftar-37-pernyataanblunder-pemerintah-soalcorona-versi-lp3es?utm_source=facebook&utm_campaign=detikcomsocmed&utm_medium=btn&utm_content=news&fbclid=IwAR1UFBHP9zfCxkeUOqFOQokS4CxYzx188zkuRlfts-oUuajpdYQ9gm8rVDdiakses8April 2020.
Panagiotopoulos, P., Bigdeli, A. Z., & Sams, S. (2014). Citizen-government collaboration on social media: The case of Twitter in the 2011 riots in England. Government Information Quarterly, 31(3), 349–357. https://doi.org/10.1016/j.giq.2013.10.014
Prasetyo, W., Ardianto, V., & Farid, M. (2020). Kepercayaan Publik Terhadap Pemerintah dalam Penanganan COVID-19. Yogyakarta
Prihantoro, E., Rakhman, F. R., & Ramadhani, R. W. (2021). Digital Movement of Opinion Mobilization: SNA Study on #Dirumahaja Vs. #Pakaimasker. Jurnal ASPIKOM, 6(1), 77. https://doi.org/10.24329/aspikom.v6i1.838
Purwaningrum, P. W., Saifullah, A. R., & Sudana, D. (2021). Covid 19 Memes in Social Media Instagram. Proceedings of the Thirteenth Conference on Applied Linguistics (CONAPLIN 2020), 546, 414–421. https://doi.org/10.2991/assehr.k.210427.063
Rakhman, F. R., Ramadhani, R. W., & Fatoni, A. (2021). Digital Movement of Opinion# IndonesiaTerserah on Social Media Twitter in The Covid-19 Pandemic. Jurnal Penelitian …, 24(1), 29–44. https://doi.org/10.20422 /jpk.v24i1.752
Sugiono, S. (2020). Fenomena Industri Buzzer di Indonesia: Sebuah Kajian Ekonomi Politik Media. Communicatus: Jurnal Ilmu Komunikasi, 4(1), 47-66
Suhifatullah, M. I. (2020). Mewujudkan Kualitas Pelayanan Publik Melalui Komunikasi Etis Aparatur Sipil Negara. PERSPEKTIF: Jurnal Ilmu Administrasi, 7(2), 163–170.
Zuhri, A. (2020). Instagram, Pandemi, dan Influencer ( Analisis Wacana Kritis pada Postingan Akun Instagram @ najwashihab dan @ jrxsid ). Academic Journal of Da’wa and Communication, 1(2), 1–25.
Copyright (c) 2022 National Research Council of Thailand

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The article published and information contained in this journal such as text, graphics, logos and images is copyrighted by and proprietary to the National Research Council of Thailand.
The article will be published under a CC-BY-NC-ND license (https://creativecommons.org). This license means that anyone may freely read, download, distribute and make the article available to the public (in printed and electronic form), provided that the author and the journal as the source are acknowledged, whereas no commercial use is allowed and the work may not be altered, transformed or serve as the basis for a derivative work.